366 research outputs found

    Editorial

    Get PDF
    No abstract available

    George Baillie on peptide array, a technique that transformed research on phosphodiesterases

    Get PDF
    George Baillie speaks to Francesca Lake (Managing Editor, Future Science OA). George Baillie is a Professor and PI within the Institute of Cardiovascular and Medical Sciences at the University of Glasgow (Glasgow, UK). His research over the last 15 years has examined many aspects of the cAMP signaling pathway in disease and he has published over 140 papers on the subject. His major discovery was that phosphodiesterases are ‘compartmentalized’, and it is their location within cells that direct their function. The Baillie/Houslay laboratory was the first to discover a specific function for a single isoform of PDE4 (namely PDE4D5 with β-arrestin desensitizes the β2-adrenergic receptor). His laboratory has since gone on to ascribe functions to several other PDE4 isoforms. He is a founder and director of Sannox Therapeutics, a spin-out venture within University of Glasgow. He is also a member of the Editorial Board of Future Science OA and Co-Editor of Cellular Signalling

    Non-genetic therapeutic approaches to Canavan disease

    Get PDF
    Canavan disease (CD) is a rare leukodystrophy characterized by diffuse spongiform white matter degeneration, dysmyelination and intramyelinic oedema with consequent impairment of psychomotor development and early death. The molecular cause of CD has been identified as being mutations of the gene encoding the enzyme aspartoacylase (ASPA) leading to its functional deficiency. The physiological role of ASPA is to hydrolyse N-acetyl-l-aspartic acid (NAA), producing l-aspartic acid and acetate; as a result, its deficiency leads to abnormally high central nervous system NAA levels. The aim of this article is to review what is currently known regarding the aetiopathogenesis and treatment of CD, with emphasis on the non-genetic therapeutic strategies, both at an experimental and a clinical level, by highlighting: (a) major related hypotheses, (b) the results of the available experimental simulatory approaches, as well as (c) the relevance of the so far examined markers of CD neuropathology. The potential and the limitations of the current non-genetic neuroprotective approaches to the treatment of CD are particularly discussed in the current article, in a context that could be used to direct future experimental and (eventually) clinical work in the field

    The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia in the elderly and its prevalence is set to increase rapidly in coming decades. However, there are as yet no available drugs that can halt or even stabilize disease progression. One of the main pathological features of AD is the presence in the brain of senile plaques mainly composed of aggregated β amyloid (Aβ), a derivative of the longer amyloid precursor protein (APP). The amyloid hypothesis proposes that the accumulation of Aβ within neural tissue is the initial event that triggers the disease. Here we review research efforts that have attempted to inhibit the generation of the Aβ peptide through modulation of the activity of the proteolytic secretases that act on APP and discuss whether this is a viable therapeutic strategy for treating AD.<p></p> Alzheimer's disease (AD) is the most common form of dementia in the elderly but as yet there are no drugs that can halt the progression of this disease. In a theory called the ‘amyloid hypothesis’, researchers have proposed that the accumulation of a small protein fragment called beta amyloid or Aβ within brain tissue is the event which triggers Alzheimer's disease. Aβ is a derivative of the longer amyloid precursor protein (APP). Here we review research efforts that have attempted to inhibit the generation of Aβ through modulation of proteins called secretases which cut APP into Aβ. Author edits made on: 20 May 2015

    PDE4-mediated cAMP signalling

    Get PDF
    cAMP is the archetypal and ubiquitous second messenger utilised for the fine control of many cardiovascular cell signalling systems. The ability of cAMP to elicit cell surface receptor-specific responses relies on its compartmentalisation by cAMP hydrolysing enzymes known as phosphodiesterases. One family of these enzymes, PDE4, is particularly important in the cardiovascular system, where it has been extensively studied and shown to orchestrate complex, localised signalling that underpins many crucial functions of the heart. In the cardiac myocyte, cAMP activates PKA, which phosphorylates a small subset of mostly sarcoplasmic substrate proteins that drive β-adrenergic enhancement of cardiac function. The phosphorylation of these substrates, many of which are involved in cardiac excitation-contraction coupling, has been shown to be tightly regulated by highly localised pools of individual PDE4 isoforms. The spatial and temporal regulation of cardiac signalling is made possible by the formation of macromolecular “signalosomes”, which often include a cAMP effector, such as PKA, its substrate, PDE4 and an anchoring protein such as an AKAP. Studies described in the present review highlight the importance of this relationship for individual cardiac PKA substrates and we provide an overview of how this signalling paradigm is coordinated to promote efficient adrenergic enhancement of cardiac function. The role of PDE4 also extends to the vascular endothelium, where it regulates vascular permeability and barrier function. In this distinct location, PDE4 interacts with adherens junctions to regulate their stability. These highly specific, non-redundant roles for PDE4 isoforms have far reaching therapeutic potential. PDE inhibitors in the clinic have been plagued with problems due to the active site-directed nature of the compounds which concomitantly attenuate PDE activity in all highly localised “signalosomes”

    Selective inhibition of phosphodiesterases 4, 5 and 9 induces HSP20 phosphorylation and attenuates amyloid beta 1-42 mediated cytotoxicity

    Get PDF
    Phosphodiesterase (PDE) inhibitors are currently under evaluation as agents that may facilitate the improvement of cognitive impairment associated with Alzheimer's disease. Our aim was to determine whether inhibitors of PDEs 4,5 and 9 could alleviate the cytotoxic effects of amyloid beta 1–42 (Aβ1-42) via a mechanism involving the small heatshock protein HSP20. We show that inhibition of PDEs 4,5 and 9 but not 3 induces the phosphorylation of HSP20 which, in turn, increases the co-localisation between the chaperone and Aβ1-42 to significantly decrease the toxic effect of the peptide. We conclude that inhibition of PDE9 is most effective to combat Aβ1-42 cytotoxicity in our cell model

    Targeting protein–protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease

    Get PDF
    The cAMP signaling system can trigger precise physiological cellular responses that depend on the fidelity of many protein–protein interactions, which act to bring together signaling intermediates at defined locations within cells. In the heart, cAMP participates in the fine control of excitation–contraction coupling, hence, any disregulation of this signaling cascade can lead to cardiac disease. Due to the ubiquitous nature of the cAMP pathway, general inhibitors of cAMP signaling proteins such as PKA, EPAC and PDEs would act non-specifically and universally, increasing the likelihood of serious ‘off target’ effects. Recent advances in the discovery of peptides and small molecules that disrupt the protein–protein interactions that underpin cellular targeting of cAMP signaling proteins are described and discussed

    Phosphorylation of ezrin on Thr567 is required for the synergistic activation of cell spreading by EPAC1 and protein kinase A in HEK293T cells

    Get PDF
    Recent studies have demonstrated that the actin binding protein, ezrin, and the cAMP-sensor, EPAC1, cooperate to induce cell spreading in response to elevations in intracellular cAMP. To investigate the mechanisms underlying these effects we generated a model of EPAC1-dependent cell spreading based on the stable transfection of EPAC1 into HEK293T (HEK293T–EPAC1) cells. We found that direct activation of EPAC1 with the EPAC-selective analogue, 8-pCPT-2′-O-Me-cAMP (007), promoted cell spreading in these cells. In addition, co-activation of EPAC1 and PKA, with a combination of the adenylate cyclase activator, forskolin, and the cAMP phosphodiesterase inhibitor, rolipram, was found to synergistically enhance cell spreading, in association with cortical actin bundling and mobilisation of ezrin to the plasma membrane. PKA activation was also associated with phosphorylation of ezrin on Thr567, as detected by an electrophoretic band mobility shift during SDS-PAGE. Inhibition of PKA activity blocked ezrin phosphorylation and reduced the cell spreading response to cAMP elevation to levels induced by EPAC1-activation alone. Transfection of HEK293T–EPAC1 cells with inhibitory ezrin mutants lacking the key PKA phosphorylation site, ezrin-Thr567Ala, or the ability to associate with actin, ezrin-Arg579Ala, promoted cell arborisation and blocked the ability of EPAC1 and PKA to further promote cell spreading. The PKA phospho-mimetic mutants of ezrin, ezrin-Thr567Asp had no effect on EPAC1-driven cell spreading. Our results indicate that association of ezrin with the actin cytoskeleton and phosphorylation on Thr567 are required, but not sufficient, for PKA and EPAC1 to synergistically promote cell spreading following elevations in intracellular cAMP

    Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond

    Get PDF
    Phosphodiesterases (PDEs), enzymes that degrade 3′,5′-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable
    corecore